Self-force as probe of internal structure

arXiv:1205.1236

Soichiro Isoyama and Eric Poisson

Department of Physics, University of Guelph

15th Capra Meeting on Radiation Reaction, June 2012
The self-force is the result of a nonlocal interaction between the field created by an electric charge and the spacetime curvature. In principle the self-force depends on all aspects of the spacetime, both local and remote.

In the case of a static charge outside a spherical distribution of matter, the self-force depends on the body’s internal structure. What does the self-force tell us about this internal structure?
Static charges in static, spherically-symmetric spacetimes

Key works:

- Smith and Will (1980): Schwarzschild black hole
- Unruh (1976): Inside a thin shell
- Burko, Liu, and Soen (2001): Inside and outside a thin shell
- Drivas and Gralla (2011): Outside a matter distribution

Drivas and Gralla showed that

\[F^r = \frac{e^2 M}{r^3} + O(r^{-5}) \]

for any matter distribution; the self-force is universal to leading order in \(r^{-1} \).

They showed also that the dependence on internal structure occurs at order \(r^{-5} \), but did not explore this dependence.
This work

To explore the dependence on internal structure, we compute the self-force acting on a static electric charge outside a static, spherically-symmetric, relativistic polytrope.

The rest-mass density ρ, pressure p, and thermodynamic energy density ϵ satisfy the equations of state

$$p = K\rho^{1+1/n}, \quad \epsilon = np$$

with K a scaling constant and n the polytropic index.

For given K and n, polytropic stellar models form a family parameterized by the central density ρ_c.

They have a total mass M and a radius R.
Following Drivas and Gralla, we compute the self-force difference

\[\Delta F^r = F^r_{\text{polytrope}} - F^r_{\text{black hole}} \]

where

\[F^r_{\text{black hole}} = \frac{e^2 M}{r^3} (1 - 2M/r)^{1/2} \]

with an exponentially-converging mode-sum method. We analyze the dependence of \(\Delta F^r \) on the equation of state.
The self-force difference is plotted as a function of r/M; all polytropes have $R/M = 15$.