EnKF and Catastrophic filter divergence

David Kelly Andrew Stuart

Mathematics Institute
University of Warwick
Coventry UK CV4 7AL
dtbkelly@gmail.com

June 5, 2013

DAS 13, University of Maryland.
The set-up for EnKF

We have a deterministic model

$$\frac{dv}{dt} = F(v) \quad \text{with} \quad v_0 \sim N(m_0, C_0).$$

We will denote $v(t) = \Psi_t(v_0)$.

We want to estimate $v_j = v(jh)$ for some $h > 0$ and $j = 0, 1, \ldots, J$ given the observations

$$y_{j+1} = H v_{j+1} + \xi_{j+1} \quad \text{for} \quad \xi_{j+1} \text{iid } N(0, \Gamma).$$
The set-up for EnKF

We have a **deterministic model**

\[
\frac{d\mathbf{v}}{dt} = F(\mathbf{v}) \quad \text{with} \quad \mathbf{v}_0 \sim \mathcal{N}(m_0, C_0).
\]

We will denote \(\mathbf{v}(t) = \Psi_t(\mathbf{v}_0). \)

We want to estimate \(\mathbf{v}_j = \mathbf{v}(jh) \) for some \(h > 0 \) and \(j = 0, 1, \ldots, J \) given the **observations**

\[
y_{j+1} = H\mathbf{v}_{j+1} + \xi_{j+1} \quad \text{for} \quad \xi_{j+1} \text{ iid } \mathcal{N}(0, \Gamma).
\]
The set-up for EnKF

We estimate using an **ensemble** of particles $\{u^{(k)}\}_{k=1}^{K}$. Each particle is a statistical **representative** of the **posterior**.

For each particle, we have an **artificial observation**

$$y_{j+1}^{(k)} = y_{j+1} + \xi_{j+1}^{(k)}, \quad \xi_{j+1}^{(k)} \text{ iid } N(0, \Gamma).$$

We update each particle using the **Kalman update**

$$u_{j+1}^{(k)} = \Psi_h(u_j^{(k)}) + G(u_j) (y_{j+1}^{(k)} - H\Psi_h(u_j^{(k)})),$$

where $G(u_j)$ is the **Kalman gain** computed using the **forecasted ensemble covariance**

$$\hat{C}_{j+1} = \frac{1}{K} \sum_{k=1}^{K} (\Psi_h(u_j^{(k)}) - \overline{\Psi_h(u_j)})^T (\Psi_h(u_j^{(k)}) - \overline{\Psi_h(u_j)}).$$
The set-up for EnKF

We estimate using an **ensemble** of particles $\{u^{(k)}\}_{k=1}^K$. Each particle is a statistical **representative** of the **posterior**.

For each particle, we have an **artificial observation**

$$y^{(k)}_{j+1} = y_{j+1} + \xi^{(k)}_{j+1}, \quad \xi^{(k)}_{j+1} \text{ iid } N(0, \Gamma).$$

We update each particle using the **Kalman update**

$$u^{(k)}_{j+1} = \psi_h(u^{(k)}_j) + G(u_j) \left(y^{(k)}_{j+1} - H\psi_h(u^{(k)}_j) \right),$$

where $G(u_j)$ is the **Kalman gain** computed using the **forecasted ensemble covariance**

$$\hat{C}_{j+1} = \frac{1}{K} \sum_{k=1}^K (\psi_h(u^{(k)}_j) - \overline{\psi_h(u_j)})^T (\psi_h(u^{(k)}_j) - \overline{\psi_h(u_j)}).$$
The set-up for EnKF

We estimate using an ensemble of particles \(\{u^{(k)}\}_{k=1}^K \). Each particle is a statistical representative of the posterior.

For each particle, we have an artificial observation

\[
y^{(k)}_{j+1} = y_{j+1} + \xi^{(k)}_{j+1}, \quad \xi^{(k)}_{j+1} \text{iid } N(0, \Gamma).
\]

We update each particle using the Kalman update

\[
u^{(k)}_{j+1} = \Psi_h(u^{(k)}_j) + G(u_j) \left(y^{(k)}_{j+1} - H\Psi_h(u^{(k)}_j) \right),
\]

where \(G(u_j) \) is the Kalman gain computed using the forecasted ensemble covariance

\[
\hat{C}_{j+1} = \frac{1}{K} \sum_{k=1}^K (\Psi_h(u^{(k)}_j) - \overline{\Psi_h(u_j)})^T (\Psi_h(u^{(k)}_j) - \overline{\Psi_h(u_j)}).
\]
The set-up for EnKF

We estimate using an **ensemble** of particles \(\{u^{(k)}\}_{k=1}^K \). Each particle is a statistical **representative** of the **posterior**.

For each particle, we have an **artificial observation**

\[
y_{j+1}^{(k)} = y_{j+1} + \xi_{j+1}^{(k)}, \quad \xi_{j+1}^{(k)} \text{ iid } \mathcal{N}(0, \Gamma).
\]

We update each particle using the **Kalman update**

\[
u_{j+1}^{(k)} = \Psi_h(u_{j}^{(k)}) + G(u_j) \left(y_{j+1}^{(k)} - H\Psi_h(u_{j}^{(k)}) \right),
\]

where \(G(u_j) \) is the **Kalman gain** computed using the **forecasted ensemble covariance**

\[
\hat{C}_{j+1} = \frac{1}{K} \sum_{k=1}^K (\Psi_h(u_{j}^{(k)}) - \overline{\Psi_h(u_j)})^T (\Psi_h(u_{j}^{(k)}) - \overline{\Psi_h(u_j)}).
\]
The set-up for EnKF

We estimate using an ensemble of particles \(\{u^{(k)}\}_{k=1}^K \). Each particle is a statistical representative of the posterior.

For each particle, we have an artificial observation

\[
y_{j+1}^{(k)} = y_{j+1} + \xi_{j+1}^{(k)}, \quad \xi_{j+1}^{(k)} \text{ iid } \mathcal{N}(0, \Gamma).
\]

We update each particle using the Kalman update

\[
u_{j+1}^{(k)} = \Psi_h(u_j^{(k)}) + G(u_j) \left(y_{j+1}^{(k)} - H\Psi_h(u_j^{(k)}) \right),
\]

where \(G(u_j) \) is the Kalman gain computed using the forecasted ensemble covariance

\[
\hat{C}_{j+1} = \frac{1}{K} \sum_{k=1}^K (\Psi_h(u_j^{(k)}) - \overline{\Psi_h(u_j)})^T (\Psi_h(u_j^{(k)}) - \overline{\Psi_h(u_j)}) .
\]
Filter divergence

It has been observed (⋆) that the ensemble can blow-up (ie. reach machine-infinity) in finite time, even when the model has nice bounded solutions.

This is known as catastrophic filter divergence.

It is suggested in (⋆) that this is caused by numerically integrating a stiff-system. Our aim is to “prove” this.

Filter divergence

It has been observed (⋆) that the ensemble can **blow-up** (i.e. reach machine-infinity) in **finite time**, even when the model has nice bounded solutions.

This is known as **catastrophic filter divergence**.

It is suggested in (⋆) that this is caused by numerically integrating a stiff-system. Our aim is to “prove” this.

Filter divergence

It has been observed (⋆) that the ensemble can **blow-up** (ie. reach machine-infinity) in **finite time**, even when the model has nice bounded solutions.

This is known as **catastrophic filter divergence**.

It is suggested in (⋆) that this is caused by numerically integrating a stiff-system. Our aim is to “prove” this.

Discrete time results

We make a “dissipativity” assumption on F. Namely that

$$F(\cdot) = A \cdot + B(\cdot, \cdot) \quad (\dagger)$$

with A linear elliptic and B bilinear, satisfying certain estimates and symmetries.

Eg. 2d-Navier-Stokes, Lorenz-63, Lorenz-96.

Theorem (AS,DK)

If $H = I$ and $\Gamma = \gamma^2 I$, then there exists constant β, K such that

$$E|u_j^{(k)}|^2 \leq e^{2\beta jh} E|u_0^{(k)}|^2 + 2K\gamma^2 \left(\frac{e^{2\beta jh} - 1}{e^{2\beta jh} - 1} \right)$$

Rmk. This becomes useless as $h \to 0$
Discrete time results

We make a "dissipativity" assumption on F. Namely that

$$F(\cdot) = A \cdot + B(\cdot, \cdot)$$

with A linear elliptic and B bilinear, satisfying certain estimates and symmetries.

\textbf{Eg.} 2d-Navier-Stokes, Lorenz-63, Lorenz-96.

\begin{quote}
\textbf{Theorem (AS,DK)}
\end{quote}

\textit{If $H = I$ and $\Gamma = \gamma^2 I$, then there exists constant β, K such that}

$$\mathbb{E} |u_j^{(k)}|^2 \leq e^{2\beta jh} \mathbb{E} |u_0^{(k)}|^2 + 2K \gamma^2 \left(\frac{e^{2\beta jh} - 1}{e^{2\beta h} - 1} \right)$$

\textbf{Rmk.} This becomes useless as $h \to 0$
Discrete time results

We make a “dissipativity” assumption on F. Namely that

$$F(\cdot) = A \cdot + B(\cdot, \cdot) \quad (†)$$

with A linear elliptic and B bilinear, satisfying certain estimates and symmetries.

Eg. 2d-Navier-Stokes, Lorenz-63, Lorenz-96.

Theorem (AS, DK)

If $H = I$ and $\Gamma = \gamma^2 I$, then there exists constant β, K such that

$$E|u_j^{(k)}|^2 \leq e^{2\beta jh} E|u_0^{(k)}|^2 + 2K\gamma^2 \left(\frac{e^{2\beta jh} - 1}{e^{2\beta h} - 1} \right)$$

Rmk. This becomes useless as $h \to 0$
The EnKF equations look like a discretization

Recall the ensemble update equation

\[
\begin{align*}
 u_{j+1}^{(k)} &= \Psi_h(u_j^{(k)}) + G(u_j) \left(y_{j+1}^{(k)} - H\Psi_h(u_j^{(k)}) \right) \\
 &= \Psi_h(u_j^{(k)}) + \hat{C}_{j+1} H^T (H^T \hat{C}_{j+1} H + \Gamma)^{-1} \left(y_{j+1}^{(k)} - H\Psi_h(u_j^{(k)}) \right)
\end{align*}
\]

Subtract \(u_j^{(k)} \) from both sides and divide by \(h \)

\[
\begin{align*}
 \frac{u_{j+1}^{(k)} - u_j^{(k)}}{h} &= \frac{\Psi_h(u_j^{(k)}) - u_j^{(k)}}{h} \\
 &\quad + \hat{C}_{j+1} H^T (hH^T \hat{C}_{j+1} H + h\Gamma)^{-1} \left(y_{j+1}^{(k)} - H\Psi_h(u_j^{(k)}) \right)
\end{align*}
\]

Clearly we need to rescale the noise (ie. \(\Gamma \)).
The EnKF equations look like a discretization

Recall the ensemble update equation

\[u^{(k)}_{j+1} = \Psi_h(u^{(k)}_j) + G(u_j) \left(y^{(k)}_{j+1} - H \Psi_h(u^{(k)}_j) \right) \]

\[= \Psi_h(u^{(k)}_j) + \hat{C}_{j+1} H^T \left(H^T \hat{C}_{j+1} H + \Gamma \right)^{-1} \left(y^{(k)}_{j+1} - H \Psi_h(u^{(k)}_j) \right) \]

Subtract \(u^{(k)}_j \) from both sides and divide by \(h \)

\[\frac{u^{(k)}_{j+1} - u^{(k)}_j}{h} = \frac{\Psi_h(u^{(k)}_j) - u^{(k)}_j}{h} \]

\[+ \hat{C}_{j+1} H^T (hH^T \hat{C}_{j+1} H + h\Gamma)^{-1} \left(y^{(k)}_{j+1} - H \Psi_h(u^{(k)}_j) \right) \]

Clearly we need to rescale the noise (ie. \(\Gamma \)).
The EnKF equations look like a discretization

Recall the ensemble update equation

\[u_{j+1}^{(k)} = \Psi_h(u_j^{(k)}) + G(u_j) (y_{j+1}^{(k)} - H\Psi_h(u_j^{(k)})) \]

\[= \Psi_h(u_j^{(k)}) + \hat{C}_{j+1} H^T (H^T \hat{C}_{j+1} H + \Gamma)^{-1} (y_{j+1}^{(k)} - H\Psi_h(u_j^{(k)})) \]

Subtract \(u_j^{(k)} \) from both sides and divide by \(h \)

\[\frac{u_{j+1}^{(k)} - u_j^{(k)}}{h} = \frac{\Psi_h(u_j^{(k)}) - u_j^{(k)}}{h} \]

\[+ \hat{C}_{j+1} H^T (hH^T \hat{C}_{j+1} H + h\Gamma)^{-1} (y_{j+1}^{(k)} - H\Psi_h(u_j^{(k)})) \]

Clearly we need to rescale the noise (ie. \(\Gamma \)).
The EnKF equations look like a discretization

Recall the ensemble update equation

\[
\begin{align*}
\mathbf{u}_{j+1}^{(k)} &= \Psi_h(\mathbf{u}_j^{(k)}) + G(\mathbf{u}_j) \left(\mathbf{y}_{j+1}^{(k)} - H\Psi_h(\mathbf{u}_j^{(k)}) \right) \\
&= \Psi_h(\mathbf{u}_j^{(k)}) + \hat{C}_{j+1} H^T (H^T \hat{C}_{j+1} H + \Gamma)^{-1} \left(\mathbf{y}_{j+1}^{(k)} - H\Psi_h(\mathbf{u}_j^{(k)}) \right)
\end{align*}
\]

Subtract \(\mathbf{u}_j^{(k)} \) from both sides and divide by \(h \)

\[
\begin{align*}
\frac{\mathbf{u}_{j+1}^{(k)} - \mathbf{u}_j^{(k)}}{h} &= \frac{\Psi_h(\mathbf{u}_j^{(k)}) - \mathbf{u}_j^{(k)}}{h} \\
&+ \hat{C}_{j+1} H^T (hH^T \hat{C}_{j+1} H + h\Gamma)^{-1} \left(\mathbf{y}_{j+1}^{(k)} - H\Psi_h(\mathbf{u}_j^{(k)}) \right)
\end{align*}
\]

Clearly we need to rescale the noise (ie. \(\Gamma \)).
Continuous-time limit

If we set $\Gamma = h^{-1}\Gamma_0$ and substitute $y_{j+1}^{(k)}$, we obtain

$$
\begin{align*}
\frac{u_{j+1}^{(k)} - u_j^{(k)}}{h} &= \frac{\Psi_h(u_{j}^{(k)}) - u_j^{(k)}}{h} + \hat{C}_{j+1} H^T (hH^T \hat{C}_{j+1} H + \Gamma_0)^{-1} \\
&\left(H \nu + h^{-1/2} \Gamma_0^{1/2} \xi_{j+1} + h^{-1/2} \Gamma_0^{1/2} \xi_{j+1}^{(k)} - H \Psi_h(u_j^{(k)}) \right)
\end{align*}
$$

But we know that

$$
\Psi_h(u_j^{(k)}) = u_j^{(k)} + O(h)
$$

and

$$
\hat{C}_{j+1} = \frac{1}{K} \sum_{k=1}^{K} (\Psi_h(u_j^{(k)}) - \overline{\Psi_h(u_j)})^T (\Psi_h(u_j^{(k)}) - \overline{\Psi_h(u_j)}) = \frac{1}{K} \sum_{k=1}^{K} (u_j^{(k)} - \overline{u_j})^T (u_j^{(k)} - \overline{u_j}) + O(h) = C(u_j) + O(h)
$$
Continuous-time limit

If we set $\Gamma = h^{-1}\Gamma_0$ and substitute $y_{j+1}^{(k)}$, we obtain

$$
\frac{u_{j+1}^{(k)} - u_j^{(k)}}{h} = \frac{\psi_h(u_j^{(k)}) - u_j^{(k)}}{h} + \hat{C}_{j+1}H^T(hH^T\hat{C}_{j+1}H + \Gamma_0)^{-1}
$$

$$
\left(H\nu + h^{-1/2}\Gamma_0^{1/2}\xi_{j+1} + h^{-1/2}\Gamma_0^{1/2}\xi_{j+1}^{(k)} - H\psi_h(u_j^{(k)}) \right)
$$

But we know that

$$
\psi_h(u_j^{(k)}) = u_j^{(k)} + O(h)
$$

and

$$
\hat{C}_{j+1} = \frac{1}{K} \sum_{k=1}^{K} (\psi_h(u_j^{(k)}) - \overline{\psi_h(u_j)})^T (\psi_h(u_j^{(k)}) - \overline{\psi_h(u_j)})
$$

$$
= \frac{1}{K} \sum_{k=1}^{K} (u_j^{(k)} - \overline{u_j})^T (u_j^{(k)} - \overline{u_j}) + O(h) = C(u_j) + O(h)
$$
Continuous-time limit

We end up with

\[
\frac{u_j^{(k)} - u_j^{(k)}}{h} = \frac{\Psi_h(u_j^{(k)}) - u_j^{(k)}}{h} - C(u_j)H^T \Gamma_0^{-1} H(u_j^{(k)} - \nu_j) + C(u_j)H^T \Gamma_0^{-1} \left(h^{-1/2} \xi_j + h^{-1/2} \xi_j^{(k)} \right) + O(h)
\]

This looks like a numerical scheme for

\[
\frac{d u^{(k)}}{dt} = F(u^{(k)}) - C(u)H^T \Gamma_0^{-1} H(u^{(k)} - \nu) + C(u)H^T \Gamma_0^{-1/2} \left(\frac{d W^{(k)}}{dt} + \frac{d B}{dt} \right).
\]

Rmk. The extra dissipation term only sees differences in observed space and only dissipates in the space spanned by ensemble.
Continuous-time limit

We end up with

\[
\frac{u_{j+1}^{(k)} - u_j^{(k)}}{h} = \frac{\Psi_h(u_j^{(k)}) - u_j^{(k)}}{h} - C(u_j)H^T\Gamma_0^{-1}H(u_j^{(k)} - v_j) \\
+ C(u_j)H^T\Gamma_0^{-1}\left(h^{-1/2}\xi_{j+1} + h^{-1/2}\xi_j^{(k)}\right) + O(h)
\]

This looks like a **numerical scheme** for

\[
\frac{du^{(k)}}{dt} = F(u^{(k)}) - C(u)H^T\Gamma_0^{-1}H(u^{(k)} - v) \\
+ C(u)H^T\Gamma_0^{-1/2}\left(\frac{dW^{(k)}}{dt} + \frac{dB}{dt}\right)
\]

Rmk. The extra dissipation term **only sees differences in observed space** and **only dissipates in the space spanned by ensemble**.
Continuous-time limit

We end up with

\[
\frac{u^{(k)}_{j+1} - u^{(k)}_j}{h} = \frac{\Psi_h(u^{(k)}_j) - u^{(k)}_j}{h} - C(u_j)H^T \Gamma_0^{-1} H(u^{(k)}_j - v_j)
+ C(u_j)H^T \Gamma_0^{-1} \left(h^{-1/2} \xi_{j+1} + h^{-1/2} \xi^{(k)}_{j+1}\right) + O(h)
\]

This looks like a **numerical scheme** for

\[
\frac{du^{(k)}}{dt} = F(u^{(k)}) - C(u)H^T \Gamma_0^{-1} H(u^{(k)} - v) + C(u)H^T \Gamma_0^{-1/2} \left(\frac{dW^{(k)}}{dt} + dB\right).
\]

Rmk. The extra dissipation term only sees differences in observed space and only dissipates in the space spanned by ensemble.
Continuous-time results

Theorem (AS,DK)

Suppose the model v satisfies (†) and $\{u^{(k)}\}_{k=1}^K$ satisfy (●). Let

$$e^{(k)} = u^{(k)} - v.$$

If $H = I$ and $\Gamma = \gamma^2 I$, then there exists constant β, K such that

$$\mathbb{E} \sum_{k=1}^K |e^{(k)}(t)|^2 \leq \mathbb{E} \sum_{k=1}^K |e^{(k)}(0)|^2 \exp(\beta t).$$
Summary + Future Work

(1) Writing down an SDE/SPDE allows us to see the important quantities in the algorithm.

(2) Does not “prove” that filter divergence is a numerical phenomenon, but is a decent starting point.

(1) Improve the condition on H.

(2) If we can measure the important quantities, then we can test the performance during the algorithm.

(3) Suggests new EnKF-like algorithms, for instance by discretising the stochastic PDE in a more numerically stable way.
Summary + Future Work

(1) Writing down an SDE/SPDE allows us to see the **important quantities** in the algorithm.

(2) Does not “prove” that filter divergence is a numerical phenomenon, but is a decent starting point.

(1) Improve the condition on H.

(2) If we can **measure** the important quantities, then we can test the performance during the algorithm.

(3) Suggests new EnKF-like algorithms, for instance by discretising the stochastic PDE in a more **numerically stable** way.