Calculation of complex singular solutions to the 3D incompressible Euler equations

Michael Siegel
Department of Mathematical Sciences
New Jersey Institute of Technology

Russel Caflisch
Department of Mathematics
UCLA

Supported by NSF
Numerical Studies

• Axisymmetric flow with swirl and 2D Boussinesq convection

• High symmetry flows

• Antiparallel vortex tubes
 - Hou & Li (2006)

• Pauls et al (2006).: Study of complex space singularities for 2D Euler in short time asymptotic regime
Axisymmetric flow with swirl

\[r^{-1} \partial_r (ru_r) + \partial_z u_z = 0 \]
\[\partial_t u_z + \mathbf{u} \cdot \nabla u_z + \partial_z p = 0 \]
\[\partial_t u_r + \mathbf{u} \cdot \nabla u_r - r^{-1} u_\theta^2 + \partial_r p = 0 \]
\[\partial_t u_\theta + \mathbf{u} \cdot \nabla u_\theta + r^{-1} u_\theta u_r = 0. \]

- Annular geometry

\[r_1 < r < r_2, \quad 0 < z < 2\pi \]

- Steady background flow

\[\mathbf{u} = (0, \bar{u}_\theta, \bar{u}_z)(r) \]

chosen to satisfy Rayleigh’s criterion for instability and an unstable eigenmode

\[\hat{\mathbf{u}}_1(r)e^{iz+\sigma t} \]
Background flow

• Background flow is smoothed vortex sheet at \(r_0 \)
 (motivated by Caflisch, Li, Shelley 1991)

\[
\overline{u_\theta} = \begin{cases}
\frac{\Gamma_1}{2\pi r} & r_1 < r < r_0 \\
\frac{\Gamma_2}{2\pi r} & r_0 < r < r_2
\end{cases}
\]

\[
\overline{u_z} = \begin{cases}
w_1 & r_1 < r < r_0 \\
w_2 & r_0 < r < r_2
\end{cases}
\]

\[
\overline{u_r} = 0.
\]

• Pure swirling flow is unstable if
 \(|\Gamma_1| > |\Gamma_2|\) (Rayleigh criterion)
Traveling wave solution

- Construct complex, upper-analytic traveling wave solution
 Baker, Caflisch & Siegel (1993)

\[u = \bar{u}(r) + u_+(r, z, t) \]

in which

\[u_+ = \sum_{k=1}^{\infty} \hat{u}_k(r) e^{ik(z-i\sigma t)} \]

- Traveling wave with speed \(\sigma \) in \(\text{Im}(z) \) direction
- \(\hat{u}_1 \) is linearly unstable eigenmode with eigenvalue \(\sigma \)
- Traveling wave speed \(\sigma \) is thus determined from linear eigenvalue problem and is independent of the amplitude
Motivation for traveling wave form

• Construction of solution is greatly simplified
 - Degrees of freedom reduced
• One way coupling among wavenumbers so mode k' depends only on $k < k'$
 - Computational errors minimized since no truncation or aliasing errors in restriction to finite number of Fourier components
• Equation for \hat{u}_k has form
 $$L_k \hat{u}_k = F_k(\overline{u}, \hat{u}_1, \ldots, \hat{u}_{k-1})$$
• L_k is second order ODE operator
Motivation (cont’d)

• Singularities at $z = z_r + i z_i$ travel with speed σ in $\text{Im } z$ direction, reach real z line in finite time (for $z_i \leq 0$)
• Singularities detected through asymptotics of Fourier coefficients \hat{u}
(Sulem, Sulem & Frisch 1983)
• Provide information on generic form of singularities
Perturbation construction of real singular solution

- Consider \(\mathbf{u} = \overline{\mathbf{u}} + \mathbf{u}_+ + \mathbf{u}_- + \tilde{\mathbf{u}} \) where \(\mathbf{u}_- = \mathbf{u}_+^*(z^*) \)
- \(\overline{\mathbf{u}}, \overline{\mathbf{u}} + \mathbf{u}_+, \overline{\mathbf{u}} + \mathbf{u}_- \) are exact solutions of Euler equations
- \(\tilde{\mathbf{u}} \) satisfies system of equations in which forcing terms are quadratic, i.e.,
 \[\mathbf{u}_+ \cdot \nabla \mathbf{u}_- + \mathbf{u}_- \cdot \nabla \mathbf{u}_+ \]
- We want \(\mathbf{u}_+, \mathbf{u}_- = O(\varepsilon) \Rightarrow \tilde{\mathbf{u}} = O(\varepsilon^2) \)
 \(\tilde{u}_{reg} \sim O(T), \tilde{u}_{sing} \sim O(T \varepsilon) + O(\varepsilon^2) \)
- Full construction requires analysis showing that singularity of \(\tilde{\mathbf{u}} \) is same or weaker than that of \(\mathbf{u}_+, \mathbf{u}_- \)
• Similar approach used in studies of singularity formation on vortex sheets
 - Siegel, Caflisch, Howison (2004)
 - Cordoba (2006)

• For vortex sheets, singularity formation is associated with ill-posedness

• For Euler equations, traveling wave solution comes from balance between instability and nonlinearity
• Numerical construction in Caflisch (1993) was for $\overline{u}_z = 0$

• Singularity position depends on r, i.e., $-\text{Im } z = \rho(r)$

• Result: $u_{r+} \sim c(z - i\sigma t - i r^2)^\alpha$ where $\alpha = -1/3$

• Amplitude of u_{r+} (i.e., c) is $O(1)$
Vortex sheet analogue

- Vortex sheets in Boussinesq approximation
 Siegel (1992), (1995)
 \(\gamma \) - vortex sheet strength
 \(A \) - density difference
- Pure Boussinesq \((A = 1, \gamma = 0) \Rightarrow \) traveling waves of \(O(1) \) amplitude
- Pure vortex sheet \((A = 0, \gamma = 1) \Rightarrow \) no traveling waves due to conservation of vorticity on sheet
- For \(A \ll 1, \gamma = 1 \) small amplitude \(\varepsilon \) traveling waves \(\varepsilon \rightarrow 0 \) as \(A \rightarrow 0 \).
Numerical method

• Pseudospectral in \(z \), 4th order discretization (in \(r \)) for \(L_k \)
• Background velocities

\[
\bar{u}_z = \sin\left(\frac{\theta_\gamma \pi}{2}\right) \bar{u}_{z0}, \quad \bar{u}_\theta = \cos\left(\frac{\theta_\gamma \pi}{2}\right) \bar{u}_{\theta0}
\]

\(0 < \theta_\gamma < 1 \)
• Numerical method is accurate but unstable
 - Instability controlled using high-precision arithmetic (10^{-100})
• Singularities detected through asymptotics of Fourier components
 (Sulem, Sulem, Frisch 1983)

\[
u_+ \approx c(z - (\mu - i \delta))^{\alpha - 1}
\]

\[
\hat{u}_k \approx c_1 k^{-\alpha} \exp(-k(\delta + i \mu))
\]
Caflisch & Siegel (2004)
Shift in time by $t_0 \equiv \text{mult. of } kth$

Fourier coeff. by $e^{\sigma k t_0} \equiv \text{shift in imag. component of sing. position by } \sigma t_0$

Adjustable parameters: $|\hat{u}_1|, \theta_\gamma$
Amplitude of u and the singularity amplitude $|c|$ vs. the axial flow fraction θ_γ.
• Square root singularity does not satisfy Beale, Kato, Majda theorem

Singularity formation at time $T \iff \int_T^\infty \sup_x |\omega(x,t)| \, dt = \infty$
3D traveling wave

- Control numerical instability
- Look for traveling wave solution, periodic in \((x, y, z)\)

\[
\mathbf{u} = \sum_{k>0} \hat{u}_k \exp(ik \cdot (x - i\sigma t))
\]

\(k = (k, l, m), \ \sigma = (\sigma_x, \sigma_y, \sigma_z)\)

- Simplify construction
 - Base flow \(\bar{\mathbf{u}} = 0\)
 - Instability driven by forcing term

\[
\mathbf{F}(\mathbf{x}) = \sum_{k<N} \hat{F}_k \exp(ik \cdot (x - i\sigma t))
\]

- Euler equations

\[
L_k \hat{u}_k = G_k (\hat{u}_{k_1}, \hat{u}_{k_2}, \ldots, \hat{u}_{k_n})
\]

\(k_j < k, \ j = 1, \ldots, n\)
\[
\begin{pmatrix}
\hat{U}_k \\
\hat{V}_k
\end{pmatrix} = \left\{(\sigma \cdot k)(k \cdot k)\right\}^{-1}
\begin{pmatrix}
(l^2 + m^2)\hat{M}_k^{(x)} - lk\hat{M}_k^{(y)} - km\hat{M}_k^{(z)} \\
-lk\hat{M}_k^{(x)} + (m^2 + k^2)\hat{M}_k^{(y)} - lm\hat{M}_k^{(z)}
\end{pmatrix}
\]

\[
\hat{w}_k = \left\{(\sigma \cdot k)k\right\}^{-1}(k\hat{M}_k^{(z)} - m\hat{M}_k^{(x)}) + mk^{-1}\hat{u}_k
\]

where \(\sigma \cdot k \neq 0, \ k \neq 0\)

\[
\hat{M}_k = \hat{F}_k + \hat{N}_k \quad \partial_k (\epsilon - \epsilon u \cdot \nabla u)
\]

- Small amplitude singularity by choice of forcing
- Introduce \(\epsilon\) into forcing; when \(\epsilon = 0\), solution \(u\) is entire.
- For small \(\epsilon\), singularity amplitude is \(O(\epsilon)\)
Numerical method

- Nonlinear terms \hat{N}_k evaluated by pseudospectral method
- No truncation error in restriction to finite k
- Since N is quadratic, padding with zeroes eliminates aliasing error from pseudospectral part of calculation
- Extreme numerical instability eliminated; very mild instability controlled by spectral filtering

We compute traveling wave $u_{+++}, u_{+++} + u_{---}$ is real
Fit of singularity parameters \(\sigma = (1, 0, 0), \epsilon = 1 \)

1D fit: \(u = \sum_{k=1}^{\infty} \hat{u}_k(y, z)e^{ikx} \)

\(u_{+++} \sim c \log(x - i|\sigma|t + \rho(y, z)) \)

- BKM satisfied
Fit of singularity parameters $\varepsilon = 0.1$

Graph showing the fit of singularity parameters α, c, and δ as functions of k. The graph includes a legend indicating the parameters represented by different lines: 'delta', 'c', and 'alpha'.
Fit of singularity parameters $\varepsilon = 0.01$
Singularity amplitude

\[\max |u_{+++}| \]

\[|c| \]

\[\mathcal{E} \]
Singular surface

\[-\text{Im } x = \rho(y, z) \quad \sigma = (1, 0, 0)\]

Geometry of singular surface is useful for analysis.
Contour plot of $100\delta(x,y)$ from data and quadratic fit: $L2(\text{err } \delta) = 1.5258e-005$

$x: \delta = -0.0087567 + 1.5084(x-y)^2 + 0.44261(x+y)^2$
Contour plot of $100\cdot\delta(y,z)$ from data and quadratic fit: $L_2(\text{err}\delta) = 1.3067e^{-005}$

$y: \delta = -0.0079482 + 1.483(x-y)^2 + 0.42761(x+y)^2$
Conclusion

• Introduced new method to compute singular solutions to 3D Euler equations with complex velocity

• Eliminated numerical instability observed in earlier calculations; introduced techniques to achieve small amplitude singularity

• Results suggest a traveling wave singularity to 3D complex Euler equations in which the velocity blows up; satisfies Beale, Kato, Majda theorem, smooth singular surface

• Easily generalized to other problems, e.g., 2D and 3D MHD, quasi-geostrophic equation, etc.