Nanotechnology

• It’s not just a miniature version of the macroscopic world

• Different physical principles result in the new properties of nanotechnology:
 - Surface-to-volume ratio
 - Stochastic behavior
 - Quantum effects
Fluctuations in Nanoscale Structures *

Ellen D. Williams

University of Maryland, College Park
P. Rous, T. Boles
University of Maryland, Baltimore County

*support: NSF-MRSEC, LPS, DCI
Nano-electronics
Shrinking electronic components to molecular scale

Surface/statistical issues:
- Interfacial contacts
- Transport in low-D nanowires and thin sheets

Nano-electronic Material

V_{gs} I_d

- Gate
- Dielectric

V_{ds}

Surface/statistical issues:
- Interfacial contacts
- Transport in low-D nanowires and thin sheets

Carbon Nanotube
Graphene on SiO$_2$

-- Fuhrer/Williams groups collaboration at Maryland, CNT and graphene by M. Ishigami
Outline

• Three parts...
 • Model metal-molecule interface
 - C60 rings
 - Modal fluctuations
 - Time constants and amplitudes
 - With respect to the metal support
 • Fluctuations and transport
 - Equal and opposite forces: electron scattering
 - Biased step fluctuations under current flow
 - Surface resistivity and transport noise
 • Roughness of a 2-D sheet
C$_{60}$/Ag(111)

- 400 nm x 400 nm image of clean Ag film
- 200 nm x 200 nm image of partial coverage of C60/Ag/mica at room temperature
- High resolution image: C60 chain decorating a step

C. Tao et al, PRB, 73, 125436 (2006)
C$_{60}$ and Step Motion

- Silver atomic motion at step edge is fast - time constant of a microsecond
- Individual C$_{60}$ at step edge may be stationary for 100s of seconds
 - Strong charge transfer in C$_{60}$ binding
- If C60 and Ag motion are correlated, C60 will act as pinning site for Ag step fluctuations

-- C. Tao et al, PRB, 73, 125436 (2006)
Choose different C60 separations and measure the effect on the Ag step edge variations $x(t)$ in between the C60s.

$$G(t) = \left\langle (x(t) - x(0))^2 \right\rangle = \left(\frac{2\Gamma(1-1/n)}{\pi} \right)^n \left(\frac{kT}{\beta} \right)^{n-1} \left(\frac{a^{n+1} t}{\tau} \right)^{1/n}$$

Clean Ag steps (no C60): $n=4$

Interesting measurement time effects: A. Bondarchuk et al, PRB 71 045426 2005
Fluctuation Modes

• Steps fluctuate like strings - with all wavelengths allowed by the boundary and/or observation conditions.

• The fluctuation correlations we observe are the combination of all the available wavelengths.

\[G(t) = \int_{q_{\text{min}}}^{2\pi/a} G_q(t) dq \quad q = 2\pi / \lambda \]

• The overall width of the fluctuations is determined by the system size \(L \sim \lambda_{\text{max}} \):

\[\omega_{eq}^2 = \left\langle (x(t) - \bar{x})^2 \right\rangle = \frac{kTL}{12\beta} \]

-- Jeong&Williams, SSR 34 175 1999
Effective system sizes

- Two step orientations
 - Different β values
- No significant dependence on C60 separation for either!
- Effective system sizes are the same as for steps on clean Ag

-- C. Tao et al, PRB, 73, 125436 (2006)
Circular Ag islands decorated by C_{60} rings

By carefully increasing the C_{60} coverage, we create circular C60 structures

Local motion of C$_{60}$ molecules is evident. Bimodal hops correlate with a C60 “kink” displacement between two favorable underlying Ag sites.

-- T. Stasevich et al., in prep (2007)
Shape fluctuations

STM image of a Ag island surrounded by a C_{60} ring (line time 0.1 s, 512 lines)

Averaged C_{60} ring shape

Digitized C_{60} rings

Time per image = 52.4 s
Total time = 3458 s
Fluctuation Modes of a Ring

- Analogy to fluctuations of an island bounded by a step
- Define modes of fluctuation

\[r_k(t) = \int_{-\pi}^{\pi} r(\theta, t) \exp(ik\theta) d\theta \quad k \in I \]
Digitized C_{60} rings

Time per image = 52.4 s,
Total time = 3458 s
Analysis of Island Fluctuations*

Measure radial displacements:

\[g(\theta,t) = R(\theta,t) - \langle R \rangle \]

Angular Fourier transform:

\[g_k = \frac{1}{2N} \sum_{n=N-1}^{N} g(n\pi/N) \exp(kn\pi/N) \]

Modal time-correlation function:

\[\left\langle \left| g_k(t + t_0) - g_k(t_0) \right|^2 \right\rangle = \frac{kTR}{2\pi\tilde{\beta}k^2} \left(1 - e^{-2t/\tau_k}\right) \]

*Khare & Einstein PRB 54, 11752 1996
Modal Time Correlation Functions

\[k=2 \]

\[k=5 \]

Fitting individual curves yields \(A_k \) and \(\tau_k \)

\[
\left\langle \left| g_k(t + t_0) - g_k(t_0) \right|^2 \right\rangle = G_k(t) = A_k \left(1 - e^{-2t/\tau_k} \right)
\]

\[z = 4, \text{ conserved noise} \]
\[z = 2, \text{ non-conserved noise} \]

C\textsubscript{60} Ring Modes

\[A_k = (0.009 \text{nm})(R/ k^\alpha), \text{ with } \alpha = 1.88 \]

\[\tau_k = (11.5 \text{nm}^2 \text{s})(R/k)^z, \text{ with } z = 1.85 \]

- \(z = 2 \) ! Non-conserved Noise - not the same as clean Ag (\(z = 4 \))

C\textsubscript{60}, \(R = 12.4 \text{ nm} \)

Mode 4:
\((A_4)^{1/2} = 0.08 \text{ nm} \)
\(\tau_4 = 120 \text{ s} \)

Mode 12:
\((A_{12})^{1/2} = 0.03 \text{ nm} \)
\(\tau_{12} = 12 \text{ s} \)

C_60 and Ag island edge

C_60, $R = 12.4$ nm

Mode 4:
$(A_4)^{1/2} = 0.08$ nm
$\Delta_4 = 120$ s

Mode 12:
$(A_{12})^{1/2} = 0.03$ nm
$\Delta_{12} = 12$ s

Clean Ag, $R = 12.4$ nm

Mode 4:
$(A_4)^{1/2} = 0.009$ nm
$\Delta_4 = 0.8$ s

Mode 12:
$(A_{12})^{1/2} = 0.001$ nm
$\Delta_{12} = 0.016$ s

-- C. Tao et al, PRB, 73, 125436 (2006)
-- A. Bondarchuk et al, PRB 71 045426 2005
Impact of Structure Fluctuations

Metal-molecule interface

• Transmission probability across a molecular bridge similar to tunneling - exponential dependence on width of gap + strong dependence on specific metal configuration at contact point

• Motion of individual metal atoms can be fast - >10^6 Hz (example Ag)

• Mode fluctuations will be much slower, and large enough in amplitude (0.01 nm) to significantly affect transmission probability

• Conserved and non-conserved noise modes will contribute distinct frequency characteristics:
 - silver (conserved)
 \[A_k \left(f_k = 1/\tau_k \right) = \frac{0.10 nm}{R} f_k^{-1/2} \]
 - C60 (non-conserved)
 \[A_k \left(f_k = 1/\tau_k \right) = \frac{8 \times 10^{-4} nm^3}{R} f_k^{-1} \]
Line Boundaries and Electrical Transport

Fluctuating surface steps affect and are affected by internal scattering of charge carriers from surface/interface

- The effects of interfaces with fluctuations in structure are important when the surface/volume ratio is large or when interfaces are the primarily source of carrier scattering or trapping

-- 20 nm Ag nanowire
Synthesis - Murphy group USC
STM - Williams group UMD
Electron-scattering Force

$Z_w = -19$ for Ag

- Force on diffusing atom: $F = e z^* E$; E = electric field
- Wind force: $z^* = n_o L \sigma_{tr}$
 - n_o = electron density, $\sim 0.1 \text{Å}^{-3}$ (58.5 nm$^{-3}$ for Ag)
 - L = mean free path, $\sim 100 \text{Å}$ (~60 nm for Ag)
 - σ_{tr} = transport cross section at E_f; $\sim 1 \text{Å}^2$ (~ha~0.07nm2 for a step edge)

Weak Force...

- For metals (e.g. Ag), resistivity is low
- \(\text{Fa} \sim 10^{-7} \text{eV/unit cell} \)
- Linear perturbation of Langevin equation for step motion

\[
\left(\frac{\partial}{\partial t} - \frac{\Gamma_4 \beta}{k_B T} \frac{\partial^4}{\partial x^4} - \frac{\Gamma_4 F}{k_B Ta} \left\| \frac{\partial^2}{\partial x^2} \right\| \right) y(x,t) = \eta(x,t)
\]

Measure Effects on step fluctuations, \(x(t) \). For Ag, the step fluctuations occur via atomic diffusion along the step edge

- Expect modified fluctuation correlations:

P. Rous et al., in preparation for NJP (2007)
Correlation function with EM - Theory

\[G_{eq}(t) = \left(\frac{2\Gamma(3/4)}{\pi} \right) \left(\frac{kT}{\tilde{\beta}} \right)^{3/4} \left(\Gamma_h t \right)^{1/4} \]

\[\tau_{EM} = \frac{kT\tilde{\beta}}{(Fa)^2} \tau_h \]

\[G_{EM}(t) \approx G_{eq}(t) \left[1 \pm \left(\frac{t}{\tau_{EM}} \right)^{1/2} \right]^{-1} \]

Wind force causes deviations in time correlation of step wandering

P.Rous et al., in preparation for NJP (2007)
Ag Thin Film with Bias Current

- Current biasing to $>10^5$ A/cm2
- Fit value is $\tau_{EM} = 50$s

A. Bondarchuk et al., submitted 2007
http://arxiv.org/abs/0704.1852
Comparison with Control

Evaluation of relative chi-squared for fit as a function of the fit parameter τ_{em}.

Biased sample ($j = 4 \times 10^5 \text{A/cm}^2$)

Unbiased sample ($j = 0$)

$T = 380K$

- 35s electromigration time const., τ_{em}
- 80s electromigration time const., τ_{em}

$T = 325K$

- 10^2s electromigration time const., τ_{em}
- 10^{16}s electromigration time const., τ_{em}
Analysis

\[F_w^2 = \frac{kT\beta \tau_h}{a \tau_{em}} \]

Calculate step stiffness† using kink energy 0.117 eV*

\[F = -2.7 \times 10^{-5} \text{ eV/nm} \] for \(J_{\text{nom}} = 4 \times 10^5 \text{A/cm}^2 \)

\[F = -9.6 \times 10^{-6} \text{ eV/nm} \] for \(J_{\text{nom}} = 1 \times 10^5 \text{A/cm}^2 \)

\[F_w = z^* eE = z^* e\rho j \]

\(\rho = 1.8 \times 10^{-6} \Omega - \text{cm} \)

\(T = 325 K \)

\(\rho = 2.2 \times 10^{-6} \Omega - \text{cm} \)

\(T = 370 K \)

Forces and effective valence substantially larger than calculated value for isolated Ag adatom on a Ag terrace (\(z^* = -19 \))

* T. Stasevich et al., PRB 71 245414 (2005)
Electron scattering at steps/kinks

- Geometric blocking of current flow at steps increases scattering $\sim x^2$
 - Kink sites may enhance geometric blocking
- Only tangential component of force affects step-edge motion
- Kink sites have enhanced charge density†
- Kink sites modify activation barrier for step-edge diffusion‡

*P.J. Rous et al., PRB, 7719, 1999
† T.S. Rahman, SS 600 4501 2006
‡ M. Giesen SS 601 140 2007
• Conservation of momentum requires opposing effect on charge carriers, modifying transport characteristics:

\[
\ell_f \frac{\partial \rho_s}{\partial n_k} \leq \frac{-F_w}{e \eta j} = (3 \pm 1.5 \text{nm}^3) \rho_o
\]

\[
\ell_f = \text{film thickness}
\]

\[
n_k = \text{kink density}
\]

\(
\ell_f =\)

For 20 nm scale structures with 1 nm step spacing, \(\Delta \rho_s \sim 0.3 \rho \)

- Structural fluctuations will affect surface resistivity, creating frequency signature in transport
Atomically thin-sheet: Graphene

Novel electronic properties:
understanding of fundamental mechanisms in flux
trapped charges and morphology both important

Preparation:
Mechanical exfoliation onto SiO2 (Geim, Kim)
Surface segregation on SiC (de Heer)

Device fabrication:
Lithographic fabrication of electrodes onto graphene
Experimental Issues

• How to “find” the device
 - Why the device need to “be found”
 - Conducting substrate usually needed
 - Combing SEM, AFM and STM, we can land tip on 1 nm² area

Experimental Issues

- How to clean graphene
 - PMMA residue remains on carbon part of the device after lift-off
 - Commercial resist remover doesn’t work
 - Special cleaning procedure* can remove PMMA residue
 - STM image show atomically clean graphene device

STM images of a graphene device

- Processing residues are completely removed
- Large corrugation
- Hexagonal and triangular patterns apparent

Two Dimensional Morphology of Graphene

Non-contact AFM image in UHV

- $\sigma_{\text{oxide}} = 3.1 \text{ Å}$ and $\sigma_{\text{graphene}} = 1.9 \text{ Å}$
- Graphene 60% smoother than SiO$_2$

Origin of Graphene Roughness

- \(G(x) = \left(z(x_0 + x) - z(x_0) \right)^2 \)
- \(b_{\text{oxide}} = 1.2, b_{\text{graphene}} = 1.1 \)
- \(\xi_{\text{oxide}} = 23 \text{ nm}, \xi_{\text{graphene}} = 32 \text{ nm} \)

- Morphology defined by the substrate
- Finite graphene “stiffness”

Graphene Corrugation

Physical origins of corrugation:

Model 1:
Intrinsic graphene property
constrained via interaction with
interface

Model 2:
Corrugations determined by
relatively strong interaction with
SiO2

Model 1: Intrinsic morphology

H. Aranda-Espinoza and D. Lavallee
Structure factor of flexible membranes

\[F = \frac{1}{2} \kappa \left[\nabla^2 h(x,y) \right]^2 + \frac{1}{2} V h^2(x,y) \]

\(\kappa = \) bending modulus (rigidity)

\[\kappa = \frac{Et^3}{12(1 - \nu^2)} \text{Graphene} \rightarrow 1.1 \times 10^{-19} J \]

\(V = \) quadratic constraining potential

\[\xi \equiv \left(\frac{\kappa}{V} \right)^{1/4} \]

\[\langle h(x,y)^2 \rangle = \frac{kT}{8(\kappa V)^{1/2}} \]

\[\langle (h(r) - h(0))^2 \rangle \sim r^2 \]

r\(^2\) dependence equivalent to \(2H = 2\).
Experimentally \(2H \sim 1\)

- Van der Waals type interaction - expand potential \(V(h)\) to 2d order around \(h_0\)
Model 2: Substrate-determined morphology

Estimated relative energies appear reasonable:

Hamaker coefficients:
- SiO$_2$: 650 x 10$^{-21}$J
- graphite: 223 x 10$^{-21}$J

$h_0 = 4.2$ Å

Adhesion energy ~ 14 meV/Å2

\[
E_{bend} = \frac{Et^3}{24(1 - v^2)} \frac{1}{R^2}
\]

What is the minimum curvature R for which adhesion overcomes bending energy?

$R > 5.5$ Å

About the radius of a single walled CNT

- Van der Waals type interaction - constrains graphene to substrate shape except for areas of very sharp curvature
Key Observations

• Interface Fluctuations

 ◆ Collective motion (structural modes) of nanometer structures (~70 C_{60}) observed in 1Hz range with amplitude on the order of 0.1 nm - sufficient to perturb transmission probabilities at electrode interfaces

 ◆ Different mechanisms of mode fluctuation yield different frequency signatures (f^{-1} and $f^{-1/2}$)

• Surface Resistivity

 ◆ Charge carrier scattering off of Ag steps sufficient to bias equilibrium fluctuations on time scale of 5 s

 ◆ Surface resistivity due to fluctuating kink structure can be ~10% of bulk resistivity for 10nm nanostructure

• Ultra-thin sheet subject to mechanical constraints (graphene) represents interesting possibilities for coordinating morphology with electrical properties
Experimental Statistical Mechanics at the Nanoscale

Nanoscale structures: fabrication, stability and evolution