Beta Encoders

Ronald DeVore

University of South Carolina
Mathematician’s Perplexity

Ingrid Daubechies, Sinan Gunturk, Vinay Vaishampayan
Mathematician’s Perplexity

- Ingrid Daubechies, Sinan Gunturk, Vinay Vaishampayan
- Analog/Digital conversion
Mathematician’s Perplexity

- Ingrid Daubechies, Sinan Gunturk, Vinay Vaishampayan
- Analog/Digital conversion
- Why Sigma-Delta?
BANDLIMITED SIGNALS

Assume:
1. Class \mathcal{B}
 a. f is bandlimited $\hat{f}(\omega) = 0$, $|\omega| > \pi$
 b. $f \in L_2 \cap L_\infty$ and $\|f\|_{L_\infty} < 1$

Shannon-Whitaker Formula

$$f(t) = \sum_{n \in \mathbb{Z}} f(n) \frac{\sin(t - n)}{(t - n)} = \sum_{n \in \mathbb{Z}} f(n) \text{sinc}(t - n)$$

Nyquist Sample Rate Is One
Most Natural Encoding: PCM1

1. \(m \geq 1, \, 0 < x < 1 \)
2. \(B_m(x) = b_1(x)2^{-1} + \cdots + b_m(x)2^{-m} \) first \(m \)-terms of binary expansion of \(x \).
3. Encode: \(f \rightarrow \{(b_1(f(n)), \ldots, b_m(f(n))\}_{n \in \mathbb{Z}} \)
4. Decode: \(\bar{f}_n := B_m(f(n)) \)

\[
\bar{f} = \sum_{n \in \mathbb{Z}} \bar{f}_n \text{sinc}(t - n)
\]
Optimal Bit Performance

Fix $[0, T]$ on which we want to recover f
Optimal Bit Performance

Fix $[0,T]$ on which we want to recover f

For bit budget of m bits per Nyquist sample it seems that PCM1 has minimal distortion:

$$\|f - \bar{f}\|_{L^2[0,T]} \ll 2^{-m}$$

for any $T > 0$
Optimal Bit Performance

- Fix $[0, T]$ on which we want to recover f
- For bit budget of m bits per Nyquist sample it seems that PCM1 has minimal distortion:

 $$\|f - \bar{f}\|_{L^2[0,T]} \ll 2^{-m}$$

 for any $T > 0$
- Why is PCM1 not preferred in practice?
Whoops: Some Problems

- Need all samples of f
Whoops: Some Problems

- Need all samples of f
- PCM not stable:

$$\sum_{n \in \mathbb{Z}} |\text{sinc}(t - n)| = \infty$$
Whoops: Some Problems

- Need all samples of f
- PCM not stable:

\[\sum_{n \in \mathbb{Z}} |\text{sinc}(t - n)| = \infty \]

- Can correct both of these by slight oversampling
Whoops: Some Problems

- Need all samples of f
- PCM not stable:

$$\sum_{n \in \mathbb{Z}} |\text{sinc}(t - n)| = \infty$$

- Can correct both of these by slight oversampling
- Let $\lambda > 1$ Take g with \hat{g} smooth so that

$$\hat{g}_\lambda(\omega) = 1, \quad |\omega| \leq \pi$$

$$\hat{g}_\lambda(\omega) = 0, \quad |\omega| > \lambda \pi$$
Oversampling Continued

For any bandlimited $f \in \mathcal{B}$:

$$f = \frac{1}{\lambda} \sum_{n \in \mathbb{Z}} f(\frac{n}{\lambda})g_{\lambda}(t - \frac{n}{\lambda})$$
Oversampling Continued

For any bandlimited \(f \in B \):

\[
f = \frac{1}{\lambda} \sum_{n \in \mathbb{Z}} f(\frac{n}{\lambda}) \hat{g}_\lambda(t - \frac{n}{\lambda})
\]

\(\hat{g}_\lambda \) smooth implies \(g_\lambda \) decays exponentially

\[
\frac{1}{\lambda} \sum_{n \in \mathbb{Z}} \left| \hat{g}_\lambda(t - \frac{n}{\lambda}) \right| \leq M, \quad \text{for all } t
\]
Oversampling Continued

For any bandlimited $f \in \mathcal{B}$:

$$f = \frac{1}{\lambda} \sum_{n \in \mathbb{Z}} f\left(\frac{n}{\lambda}\right) g_\lambda(t - \frac{n}{\lambda})$$

\hat{g}_λ smooth implies g_λ decays exponentially

$$\frac{1}{\lambda} \sum_{n \in \mathbb{Z}} |g_\lambda(t - \frac{n}{\lambda})| \leq M, \quad \text{for all } t$$

PCM Encoding: $f \longrightarrow \{(b_1(f(n)), \ldots, b_m(f(n))\}_{n \in [-a,T+a]}$
Oversampling Continued

For any bandlimited \(f \in B \):

\[
f = \frac{1}{\lambda} \sum_{n \in \mathbb{Z}} f\left(\frac{n}{\lambda}\right) g_{\lambda}(t - \frac{n}{\lambda})
\]

\(\hat{g}_{\lambda} \) smooth implies \(g_{\lambda} \) decays exponentially

\[
\frac{1}{\lambda} \sum_{n \in \mathbb{Z}} \left| g_{\lambda}(t - \frac{n}{\lambda}) \right| \leq M, \quad \text{for all } t
\]

PCM Encoding: \(f \longrightarrow \{(b_1(f(n)), \ldots, b_m(f(n))\}_{n \in [-a,T+a]}

Still not the answer: Sigma-Delta preferred over PCM in practice
1. Let $\lambda >> 1$
2. We want to assign one bit to each sample $f(\frac{n}{\lambda})$
3. Set $u_0 = 0$ and define recursively

\[
\begin{align*}
 u_n &= u_{n-1} + f(\frac{n}{\lambda}) - q_n^\lambda \\
 q_n^\lambda &= \text{sign} \left(u_{n-1} + f(\frac{n}{\lambda}) \right),
\end{align*}
\]

4. Read $f(\frac{1}{\lambda})$ assign q_1^λ, Read $f(\frac{2}{\lambda})$ assign q_2^λ, etc.
4’. Can define a similar recursion running backwards

5. Decode:

\[f_\lambda(t) := \frac{1}{\lambda} \sum_{n \in \mathbb{Z}} q_\lambda^n g_\lambda(t - \frac{n}{\lambda}) \]

6. \(u_n \) state variable tracks differences in running sums:

\[u_n = \sum_{k=1}^{n} \left[f\left(\frac{k}{\lambda}\right) - q_k^\lambda \right] \]
What is rate distortion for Sigma-Delta?

Summation by parts

\[
f(t) - f_\lambda(t) = \frac{1}{\lambda} \sum_{n \in \mathbb{Z}} \left[f\left(\frac{n}{\lambda} \right) - q_n^\Lambda \right] g_\lambda(t - \frac{n}{\lambda})
\]

\[
= \frac{1}{\lambda} \sum_{n \in \mathbb{Z}} \left[u_n - u_{n-1} \right] g_\lambda(t - \frac{n}{\lambda})
\]

\[
= \frac{1}{\lambda} \sum_{n \in \mathbb{Z}} u_n \left[g_\lambda(t - \frac{n}{\lambda}) - g_\lambda(t - \frac{n + 1}{\lambda}) \right]
\]
Rate Distortion continued:

If state variable $|u_n|$ bounded by M, then

$$|f(t) - f_\lambda(t)| \leq \frac{M}{\lambda} \sum_{n \in \mathbb{Z}} \int_{\frac{n}{\lambda}}^{\frac{n+1}{\lambda}} |g_\lambda'(s)| \, ds \leq C \frac{M}{\lambda}$$
Rate Distortion continued:

- If state variable $|u_n|$ bounded by M, then

$$|f(t) - f_\lambda(t)| \leq \frac{M}{\lambda} \sum_{n \in \mathbb{Z}} \int_{\frac{n}{\lambda}}^{\frac{n+1}{\lambda}} |g'_\lambda(s)| \, ds \leq C \frac{M}{\lambda}$$

- Prove $|u_n| \leq 1$ by induction

$$u_n = u_{n-1} + f\left(\frac{n}{\lambda}\right) - \text{sign}(u_{n-1} + f\left(\frac{n}{\lambda}\right))$$

$\in [-2,2]$
Compare:

$m \text{ number of bits per Nyquist sample}$
Compare:

- m number of bits per Nyquist sample
- PCM has distortion $O(2^{-m})$
Compare:

- m number of bits per Nyquist sample
- PCM has distortion $O(2^{-m})$
- Sigma-Delta has distortion $O(1/m)$
Compare:

- \(m \) number of bits per Nyquist sample
- PCM has distortion \(O(2^{-m}) \)
- Sigma-Delta has distortion \(O(1/m) \)
- Why use Sigma-Delta?
Where are we?

- We still have no explanation of why engineers prefer Sigma-Delta modulation
Where are we?

- We still have no explanation of why engineers prefer Sigma-Delta modulation
- From the viewpoint of rate distortion PCM is better
Where are we?

- We still have no explanation of why engineers prefer Sigma-Delta modulation
- From the viewpoint of rate distortion PCM is better
- The answer must lie elsewhere
Where are we?

- We still have no explanation of why engineers prefer Sigma-Delta modulation
- From the viewpoint of rate distortion PCM is better
- The answer must lie elsewhere
- Error in computation: circuit implementation
Imperfect Quantizers

- In circuit implementation, Quantizers will not be perfect.
Imperfect Quantizers

- In circuit implementation Quantizers will not be perfect
- Consider the imperfect implementation of $Q(x) := \text{sign } x$

\[
Q_n(x) = \text{sign}(x) \quad \text{for } |x| \geq \tau \\
|Q_n(x)| = 1 \quad \text{for } |x| \leq \tau
\]
Imperfect Quantizers

In circuit implementation Quantizers will not be perfect.

Consider the imperfect implementation of $Q(x) := \text{sign } x$

\[Q_n(x) = \text{sign}(x) \quad \text{for } |x| \geq \tau \]
\[|Q_n(x)| = 1 \quad \text{for } |x| \leq \tau \]

Here τ can vary at each implementation but $|\tau| \leq \mu$ with μ fixed.
Suppose \(x = 1/2 + \delta \) with \(0 < \delta < \tau \). Then first bit \(b_1(x) \) may be wrong.
Imperfect quantizer in PCM

Suppose \(x = 1/2 + \delta \) with \(0 < \delta < \tau \). Then first bit \(b_1(x) \) may be wrong

\(b_1(x) \neq Q(x) \)
Suppose $x = 1/2 + \delta$ with $0 < \delta < \tau$. Then first bit $b_1(x)$ may be wrong:

- $b_1(x) \neq Q(x)$
- $|x - \bar{x}| \geq \delta$
Imperfect quantizer in PCM

Suppose \(x = 1/2 + \delta \) with \(0 < \delta < \tau \). Then first bit \(b_1(x) \) may be wrong

\[b_1(x) \neq Q(x) \]

\[|x - \bar{x}| \geq \delta \]

\[|f(t) - \bar{f}(t)| \geq c\delta \]
Imperfect quantization in Sigma-Delta Modulation

New Dynamical System

\[\begin{align*}
\bar{u}_n &= u_{n-1} + f\left(\frac{n}{\lambda}\right) - \bar{q}_n^\lambda \\
\bar{q}_n^\lambda &= Q_n \left(\bar{u}_{n-1} + f\left(\frac{n}{\lambda}\right) \right)
\end{align*} \]

CLAIM

\[|\bar{u}_n| \leq 1 + \delta \]

\[u_{n-1} + f\left(\frac{n}{\lambda}\right) - \bar{q}_n^\lambda \]

\[\in [-2-\delta, 2+\delta] \]
Error Analysis

1. $\bar{f}(t) = \frac{1}{\lambda} \sum_{n \in \mathbb{Z}} \bar{q}_n^\lambda g^\lambda(t - \frac{n}{\lambda})$

2. $|f(t) - \bar{f}(t)| \leq C/\lambda$

We get same error bounds with quantization error
Error Analysis

1. \(\bar{f}(t) = \frac{1}{\lambda} \sum_{n \in \mathbb{Z}} \bar{q}_n g_{\lambda}(t - \frac{n}{\lambda}) \)
2. \(|f(t) - \bar{f}(t)| \leq C/\lambda \)

We get same error bounds with quantization error

PCM gives error \(\delta \), Sigma-Delta gives error \(C/\lambda \)
Error Analysis

1. \[\bar{f}(t) = \frac{1}{\lambda} \sum_{n \in \mathbb{Z}} \bar{q}_n^{\lambda} g^{\lambda}(t - \frac{n}{\lambda}) \]
2. \[|f(t) - \bar{f}(t)| \leq C/\lambda \]

- We get same error bounds with quantization error
- PCM gives error \(\delta \), Sigma-Delta gives error \(C/\lambda \)
- Self correction is due to the feedback loop
1. \(\bar{f}(t) = \frac{1}{\lambda} \sum_{n \in \mathbb{Z}} q_n^\lambda g^\lambda(t - \frac{n}{\lambda}) \)

2. \(|f(t) - \bar{f}(t)| \leq \frac{C}{\lambda} \)

- We get same error bounds with quantization error
- PCM gives error \(\delta \), Sigma-Delta gives error \(\frac{C}{\lambda} \)
- Self correction is due to the feedback loop
- Same analysis works for higher order Sigma-Delta
Can we have best of both worlds?

- PCM offers exponential decay in distortion but no quantization error correcting
Can we have best of both worlds?

- PCM offers exponential decay in distortion but no quantization error correcting
- Sigma-Delta offers quantization error correction but not exponential decay in distortion
Can we have best of both worlds?

- PCM offers exponential decay in distortion but no quantization error correcting
- Sigma-Delta offers quantization error correction but not exponential decay in distortion
- Can we have both exponential rate distortion and quantization error correction
Return to binary encoding

Quantizer $Q(y) = 1, \quad y \geq 1, \quad Q(y) = 0, \quad y < 1$

\begin{align*}
u_1 & = 2x \\
b_1 & = Q(u_1) \\
u_{n+1} & = 2(u_n - b_n) \\
b_{n+1} & = Q(u_{n+1})
\end{align*}

\[x = \sum_{n=1}^{\infty} b_n 2^{-n}\]
Let $1 < \beta < 2$
- Let $1 < \beta < 2$
- If $x \in [0, 1]$, then $x = \sum k b_k \beta^{-k}$
Let $1 < \beta < 2$

If $x \in [0, 1]$, then $x = \sum_k b_k \beta^{-k}$

This decomposition is not unique
Let $1 < \beta < 2$

If $x \in [0, 1]$, then $x = \sum b_k \beta^{-k}$

This decomposition is not unique

Can use redundancy to have quantization error correcting
Delay Buffer:

- Idea is to delay assigning bit of one till sure. Can do this because we can always catch up
Delay Buffer:

- Idea is to delay assigning bit of one till sure. Can do this because we can always catch up

- To ensure representation exists after assigning \(b_1, \ldots, b_n \), we need

\[
0 \leq x - \sum_{k=1}^{n} b_k \beta^{-k} \leq \sum_{k=n+1}^{\infty} \beta^{-k} = \frac{\beta^{-n}}{\beta - 1}
\]
Implement Delay

We shall use a delay $\delta > 0$
Implement Delay

- We shall use a delay $\delta > 0$
- Ideal quantization

\[Q(x) = 1, \quad x \geq 1 + \delta \]

\[Q(x) = 0, \quad x < 1 + \delta \]
Determines bits

Encoding a number $x \in [0, 1)$

\[
\begin{align*}
 u_1 &= \beta x \\
 b_1 &= Q(u_1) \\
 u_{n+1} &= \beta(u_n - b_n) \\
 b_{n+1} &= Q(u_{n+1}) \\
 x &= \sum_{n=1}^{\infty} b_n \beta^{-n}
\end{align*}
\]
Imperfect quanizer

\[\bar{Q}(x) = 1, \quad x \geq 1 + \delta + \tau \]

\[\bar{Q}(x) = 0, \quad x < 1 + \delta - \tau \]

\[\bar{Q}(x) \in \{0, 1\} \]
Encoding a number

\[\bar{u}_1 = \beta x \]

\[\bar{b}_1 = \bar{Q}(u_1) \]

\[\bar{u}_{n+1} = \beta(\bar{u}_n - \bar{b}_n) \]

\[\bar{b}_{n+1} = \bar{Q}(u_{n+1}) \]
Theorem Given μ and suppose each τ in the imperfect quantizer satisfies $|\tau| \leq \mu$. If delay δ satisfies
(i) $\mu \leq \delta$
(ii) $1 < \beta < \frac{2+\mu+\delta}{1+\mu+\delta}$
Then, for each $x \in [0, 1)$, we have
\[
|x - \sum_{k=1}^{n} \bar{b}_k \beta^{-k}| \leq C \beta^{-n}
\]
The beta encoder can be used to build an encoder for signals with the same exponential decay in the face of imprecise quantizers.
Encoding Signals

- The beta encoder can be used to build an encoder for signals with the same exponential decay in the face of imprecise quantizers.
- Sample slightly above Nyquist rate.
Encoding Signals

- The beta encoder can be used to build an encoder for signals with the same exponential decay in the face of imprecise quantizers.
- Sample slightly above Nyquist rate.
- Quantize sample $f\left(\frac{n}{\lambda}\right)$ using m bits from Beta encoder.
Encoding Signals

- The beta encoder can be used to build an encoder for signals with the same exponential decay in the face of imprecise quantizers.
- Sample slightly above Nyquist rate.
- Quantize sample $f\left(\frac{n}{\lambda}\right)$ using m bits from Beta encoder.
- This gives quantized \bar{f}_n.
Encoding Signals continued

\[\bar{f}_n \text{ decoding of these bits} \]

\[|f(t) - \frac{1}{\lambda} \sum_{n \in \mathbb{Z}} \bar{f}_n g_{\lambda}(t - \frac{n}{\lambda})| \leq C \beta^{-m} \]
Encoding Signals continued

- \(\bar{f}_n \) decoding of these bits

\[
|f(t) - \frac{1}{\lambda} \sum_{n \in \mathbb{Z}} \bar{f}_n g_\lambda(t - \frac{n}{\lambda})| \leq C \beta^{-m}
\]

- This encoder is impervious to quantization error