MATH 141H Exam 1 Preparation Solution

1. Let \(f(x) = 3x - x^2 \) and let \(R \) denote the region bounded by the graph of \(f \) and the \(x \) axis.

 (1) Draw the graph of \(f \) and find the \(x \) intercepts.

 (2) Find the volume of the solid generated by revolving the region \(R \) about the \(x \) axis.

 (3) Find the volume of the solid generated by revolving the region \(R \) about the \(y \) axis.

 (4) Find the moment \(M_y \) of the region \(R \) about the \(y \) axis.

 (5) Find the moment \(M_x \) of the region \(R \) about the \(x \) axis.

 Solution: (1)

 \[
 y = 3x - x^2
 \]

 \[
 \begin{align*}
 (2)\ V &= \int_0^3 \pi (3x - x^2)^2 dx = \pi \int_0^3 (9x^2 - 6x^3 + x^4) dx = \pi \left(3x^3 - \frac{3x^4}{2} + \frac{x^5}{5} \right) \bigg|_0^3 = \frac{81}{10} \pi. \\
 (3)\ V &= 2\pi \int_0^3 (3x - x^2) dx = 2\pi \int_0^3 (3x^2 - x^3) dx = 2\pi \left(x^3 - \frac{x^4}{4} \right) \bigg|_0^3 = \frac{91}{2} \pi. \\
 (4) \text{ and } (5): \text{ By definition of moments and their relation to the disc/shell method,} \\
 M_y &= \frac{1}{2\pi} \times (3) = \frac{91}{4}, \quad M_x = \frac{1}{2\pi} \times (2) = \frac{81}{20}.
 \end{align*}
\]

2. A tank has the shape of a solid generated by revolving about the \(y \) axis the curve \(y = x^3 \) for \(x \) in \([0, 2]\), and is full of water weighting 62.5 pounds per cubic foot.

 (1) Draw a picture of the situation.

 (2) Calculate the cross-sectional area in terms of \(y \).

 (3) Write down the integral for work \(W \) required to bring water to the top of the tank until there is a depth of 1 foot of water in the tank with respect to the \(y \) integral.
3. Let R be the region enclosed by the graphs of the functions $f(x) = 4|x|$ and $g(x) = x^2$.

(1) Draw the graphs and find the x coordinates of intersecting points.

(2) Calculate the area of the region R.

(3) Find the moment M_y of the region R about the y axis and the moment M_x of the region R about the x axis. (You may use symmetry where appropriate; otherwise you must show integral calculus work.)

(4) Calculate the center of mass.

Solution: (1)

$$A = \int_{-4}^{4} (4|x| - x^2)\,dx = 2\int_{0}^{4} (4x - x^2)\,dx = 2\left(2x^2 - \frac{x^3}{3}\right)\Big|_{0}^{4} = \frac{64}{3}.$$
(3) Since the graph is symmetric with respect to the y axis, $M_y = 0$.

\[
M_x = \frac{1}{2} \int_{-4}^{4} [(4|x|)^2 - (x^2)^2] \, dx = \int_{0}^{4} (16x^2 - x^4) \, dx = \left(\frac{16x^3}{3} - \frac{x^5}{5} \right) \bigg|_0^4 = \frac{2048}{15}.
\]

(4) The center of mass (\bar{x}, \bar{y}) is given by $\bar{x} = \frac{M_y}{A} = 0$, $\bar{y} = \frac{M_x}{A} = \frac{32}{5}$.

4. Consider the curve C with parametrization

\[
x = \frac{2}{3} \sin^\frac{3}{2} t, \quad y = \sin t, \quad 0 \leq t \leq \frac{\pi}{2}.
\]

Find the length of the curve.

Solution: Since

\[
\frac{dx}{dt} = \sin^{\frac{3}{2}} t \cos t, \quad \frac{dy}{dt} = \cos t \Rightarrow \left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 = \sin t \cos^2 t + \cos^2 t = \cos^2 t(\sin t + 1),
\]

The length is

\[
L = \int_{0}^{\frac{\pi}{2}} \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2} \, dt = \int_{0}^{\frac{\pi}{2}} |\cos t| \sqrt{\sin t + 1} dt.
\]

Since $\cos t \geq 0$ on the interval $[0, \frac{\pi}{2}]$,

\[
L = \int_{0}^{\frac{\pi}{2}} \cos t \sqrt{\sin t + 1} dt = \int_{0}^{\frac{\pi}{2}} \cos t \sqrt{\sin t + 1} dt.
\]

Let $u = \sin t + 1 \Rightarrow du = \cos t \, dt$. Therefore,

\[
L = \int_{0}^{\frac{\pi}{2}} \cos t \sqrt{\sin t + 1} dt = \int_{u(0)}^{u(\frac{\pi}{2})} \sqrt{u} \, du = \int_{1}^{2} \sqrt{u} \, du = \frac{2}{3} u^{\frac{3}{2}} \bigg|_1^{2} = \frac{2}{3} (2^{\frac{3}{2}} - 1).
\]

5. Given $f(x) = 2x^\frac{3}{2}$ find the length of the graph of f on the interval $[0, 2]$.

Solution: Since

\[
f'(x) = 2 \cdot \frac{3}{2} x^{\frac{1}{2}} = 3\sqrt{x} \Rightarrow 1 + (f'(x))^2 = 1 + 9x,
\]

The length is

\[
L = \int_{0}^{2} \sqrt{1 + (f'(x))^2} \, dx = \int_{0}^{2} \sqrt{1 + 9x} \, dx.
\]

Let $u = 1 + 9x \Rightarrow du = 9 \, dx$. Then,

\[
L = \int_{0}^{2} \sqrt{1 + 9x} \, dx = \frac{1}{9} \int_{u(0)}^{u(2)} \sqrt{u} \, du = \frac{1}{9} \int_{1}^{19} \sqrt{u} \, du = \frac{2}{27} u^{\frac{3}{2}} \bigg|_1^{19} = \frac{2}{27} (19^{\frac{3}{2}} - 1).
\]
6. Sketch the graph of the equation \(r = 1 + 2 \sin \theta \).

Solution: Since \(\sin(\pi - \theta) = \sin \theta \), the graph is symmetric with respect to the \(y \) axis.

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(-\frac{\pi}{2})</th>
<th>(-\frac{\pi}{6})</th>
<th>0</th>
<th>(\frac{\pi}{6})</th>
<th>(\frac{\pi}{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r)</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

7. Sketch the graph of the equation \(r^2 = \cos \theta \).

Solution: Since \(\cos(-\theta) = \cos \theta \), the graph is symmetric with respect to the \(x \) axis. Since \(\cos \theta \leq 0 \) on \([\frac{\pi}{2}, \pi] \), we skip it. By using the symmetry, we complete the sketch of the graph as follows.
8. Sketch the graph of the equation $r^2 = \cos 2\theta$ and calculate the area enclosed by the curve.

Solution: Since $\cos(-2\theta) = \cos 2\theta$, the graph is symmetric with respect to the x axis. Since $\cos 2\theta \leq 0$ on $[\frac{\pi}{4}, \frac{3\pi}{4}]$, we skip it.

<table>
<thead>
<tr>
<th>θ</th>
<th>0</th>
<th>$\frac{\pi}{4}$</th>
<th>\sim</th>
<th>$\frac{3\pi}{4}$</th>
<th>π</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>1</td>
<td>0</td>
<td>\times</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

The area enclosed by the graph is

$$A = 2 \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} r^2 d\theta = 2 \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos 2\theta d\theta = \sin 2\theta \bigg|_{-\frac{\pi}{4}}^{\frac{\pi}{4}} = 2.$$