Math 141H Homework 2 (Section 6.4 and 6.5)

Show all your work. Jumping to the right answer without minimum reasoning deserves no credit.

1. Suppose 12 joules of work are required to extend a spring from its length of 1 meter to 3 meters. Find the work \(W \) done extending the spring from a length of 3 meters to 5 meters. (Hint: Calculate the constant \(k \) first.)

2. A conical tank with its point at the bottom has its top is 4 feet underground. The top of the tank has a radius of 5 feet and the tank is 10 feet tall. Suppose the tank is filled with water weighting 5 \(\text{lb/ft}^3 \) (instead of 62.5 \(\text{lb/ft}^3 \)).

 (1) Draw a picture of the situation.

 (2) Calculate the cross-sectional area.

 (3) Write down the integral for work \(W \) required to bring water to the ground until there is a depth of 5 foot of water in the tank.

 (4) Evaluate the integral (optional).

3. A tank is in the shape of the curve \(y = 8x^3 \) for \(0 \leq x \leq 1 \) revolved around the \(y \) axis. Suppose the tank is filled with water weighting 5 \(\text{lb/ft}^3 \) (instead of 62.5 \(\text{lb/ft}^3 \)).

 (1) Draw a picture of the situation.

 (2) Calculate the cross-sectional area in terms of \(y \).

 (3) Write down the integral for work \(W \) required to bring water to the top of the tank until there is a depth of 1 foot of water in the tank with respect to the \(y \) integral.

 (4) Evaluate the integral (optional).

4. Find the center of mass \((\bar{x}, \bar{y})\) of the semicircular region consisting of the points \((x, y)\) such that \(x^2 + y^2 \leq R^2 \) and \(y \geq 0 \).

5. Consider the region \(R \) bounded by the graphs \(y = x^2 \) and \(y = 2x + 3 \).

 (1) Find the area of the region.

 (2) Calculate the moment \(M_y \) around the \(y \) axis.

 (3) Calculate the moment \(M_x \) around the \(x \) axis.

 (4) Find the center of mass \((\bar{x}, \bar{y})\).