Homework 4. Due Tue. Oct. 2 by 4.30pm in my mailbox

1. **(5 pts)** Ref. [1], Chapter 5, Problem 1 (page 123). I am slightly rephrasing it.

The solution to \(Au = b \) may be written \(u = A^{-1}b \). The goal of this exercise is to show that you should NOT write the command \(u = \text{inv}(A) \ast b \) in Matlab as it is more than twice as expensive to execute as \(u = A \backslash b \). In other lower level languages, it is also cheaper to solve \(Au = b \) using Gaussian elimination. Below you will calculate the computational cost of finding \(B = \text{inv}(A) \).

(a) Show that about \((2/3)n^3\) flops reduces \(AB = I \) to \(UB = L^{-1} \).

(b) Show that computing the entries of \(B \) from \(UB = L^{-1} \) by back substitution takes about \(n^3 \) flops.

(c) Use this to verify the claim that computing \(A^{-1} \) is more than twice as expensive as solving \(Au = b \) by LU factorization.

2. **(10 pts)** Ref. [1], Chapter 5, Problem 4 (page 124). **Comments.** In (c), Exercise 11 is the one from Chapter 4.

3. **(5 pts)** Let \(A \) be \(N \times N \) symmetric matrix. Use Householder matrices to show that there exists an orthogonal matrix \(Q \) such that \(T := QT \ \text{AQ} \) is tridiagonal. **Hint:** Let \(N \geq 3 \). **Design a Householder matrix** \(Q_1 \) **such that** \(Q_1 A \) **has all zeros in the first column below row 2. Then show that** \(A_1 := Q_1 AQ_1^T \) **has zeros in the first crow after column 2. If** \(N > 3 \), **design a Householder matrix** \(Q_2 \) **such that** \(Q_2 A_1 \) **has all zeros in column 1 below row 2 and in column 2 below row 3. Set** \(A_2 := Q_2 A_1 Q_2^T \) **and show that it has zeros all zeros in row 1 after column 2 and in row 2 after column 3. And so on. At the end, set** \(Q := Q_{N-2} \ldots Q_2 Q_1 \). **You can look up Householder transformations in [2] (Section 3.4.1)**

Remark If an \(N \times N \) matrix \(A \) is symmetric then there exist orthogonal matrix \(V \) and a diagonal matrix \(D \) such that \(A = VDV^T \) (the eigenvalue decomposition). However, if \(N > 4 \), the matrix \(V \) in principle cannot be found exactly at a finite number of steps except for some special cases. This is due to the fact that the roots of a polynomial of degree \(\geq 5 \) cannot be expressed as any finite algebraic expression involving the polynomial coefficients. Contrary to this, if the goal is more modest, i.e., to reduce \(A \) to a tridiagonal matrix rather than to a diagonal one, it can be always achieved in a finite number of iterations \((\leq N - 2)\).

References

[1] Bindel and Goodman, Principles of scientific computing